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AbItrIct-Thc approximate 2·0 theory derived in Part I is applied here to the time harmonic problems of
plane-strain and msymmetry. Also, the transient axisymmetric solution is obtaiJlecI for a circular layer that
is suddenly released from a transverse concentrated central load on one face and an opposing rina load
Ilona the outer edae of the other face. For this problem the output voltap is computed as a function of
time when the crystal is an element in a known electrical circuit.

1. INTRODUCTION
This paper is a continuation of Part I, which appears as the preceeding article in this same
journal issue and is designated as Ref. OJ. Many of the equations in [1] will be required for the
analysis presented here, and they will be referenced with the assumption that the reader has
access to that paper.

In [1] an Nth order approximate 2-D theory was developed for strongly coupled piezoelec
tric ceramic layers that are used in electro-mechanical transducers. It was found that the first
order theory was the lowest that yields an electro-mechanical coupling. The dispersion curves
were obtained for harmonic waves in the layer for both the 3-D and the first and second order
approximate 2-D theories.

In this Part II, we present general Nth order theory solutions for steady state time-harmonic
motions of plane-strain and axisymmetry. We also obtain the transient axisymmetric solution
for a circular layer that is supported along its outer edge, loaded transversely at its center, and
then released from this loading so that transient free vibrations occur. The layer with electroded
faces is assumed to be an element in a circuit with known electrical impedance, and the voltage
between the layer electrodes is derived as a function of time.

In Section 2 the general circuit equation is derived, and it is found that the output voltage is
associated only with the extensional modes of motion. The steady state time-harmonic
plane-strain solution is derived in Section 3. The time-harmonic axisymmetric problem is
treated in Section 4, and the transient axisymmetric case is solved in Section 5. Section 6
contains the numerical results of this solution for a particular loading and crystaJ. A brief
discussion is given in Section 7.

2. DERIVATION OF CIRCUIT EQUATION

In this section we consider layers with cylindrical edge boundaries as shown in Fig. I of [l]
for two shapes of the boundary curve C. In each problem the faces of the layer are
electroplated and therefore are equipotential surfaces. The edges are directly in contact with a
non-conducting medium, so the currents across them vanish.

When such a layer is the active element of a circuit, the voltage difference is determined by
the current equation

1= YV (2.1)

where V, Y and 1 stand for the voltage difference, the circuit admittance and the current,
respectively. In order to make use of this equation we need an expression for the current in
terms of the 2-D field variables of the approximate theory. The current across a surface Sis
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Fig. I. Layer cross section for the case of plane strain.

I =ddt Is DJfli dS. (2.2)

Integrating the 3-D electric displacement field equation (2.2) of [1) over the volume of the layer,
applying the divergence theorem, differentiating with respect to time, and, finally, recalling (2.2),
we obtain the result that the total current across the boundaries of the layer is equal to zero.
Since we have already assumed that the current across the edge boundary vanishes, this implies

(2.3)

where A is the area of the middle plane of the layer and D+ and D- denote D evaluated at
X2 =band X2 =-b, respectively. Designating by Dzo and Dz. the odd and even components of
Dz with respect to the x2-coordinate, we can rewrite (2.3) as

(2.4)

The current that enters the layer through the lower face is then equal to the current that leaves
it through the upper face and is given by

(2.5)

By application of the divergence theorem to the upper half of the layer only, this is found to be
equal also to the current across the middle plane

(2.6)

where Dz° denotes D2 evaluated at X2 = O.
The 3-D constitutive equation for D2t involves only extensional variables

(2.7)

where subscripts "e" and "0" denote the even and odd parts of the functions with respect to
X2 = O. The series expansions for these variables are

R

".,. =~ "y(2k) cos k1T(l- "'),
f:'o

_ ~s (2k+1) (2k + 1)1T (1 _ ,I,)
"20 - "2 cos 2 'I' ,

-0

R

<Po = B(t)", +~ <p(2I<) sin k1T(l- "')
f:'.

(2.8)

where integers Rand S were defined in (4.5) of [1] for the Nth order approximate theory. We
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substitute (2.8) into (2.7) and obtain for X2 =0,

D~~ =-En B~t)+~o {(_1)k [ e2IU~~) +E22 e;) 4112k)]}

+ en to {(_1)k (2k;bl)1T U2(2k+l)}.

Then using (2.6) we find

1=-Afn .B~t)+~ {(-Ok L[e2IU~~)+ k; f22~(2k)] dA}

+en~ {(_nd2k;b1)1TLliPk+J)dA}.

Now, substitution of

B(t) =i V(t)

(2.9)

(2.10)

(2.11)

along with (2.10) into (2.1) yields the circuit equation in terms of the two-dimensional field
variables

~{(_l)k I,Je2Ili~~)+E22t; ~12k)]dA}

+e22~ {(_1)k (2k;bl)1l' LUpk+l)dA}:;:: (YV +~~p v). (2.12)

An important result from the point of view of transducer applications can be discerned by
inspection of field equations (3.33) of [1] and, when the layer is the active element of a circuit, also
the circuit equation (2.12). For a passive layer with faces constrained to be equipotential surfaces,
the imposed voltage difference between the two faces effects only extensional variables; and only
the extensional variables determine the voltage difference when the layer is the active element.
That is, the voltage difference, for the type of crystal considered here, does not alter and is
insensitive to the flexural modes of motion. This can also be deduced from the relevant
three-dimensional equations.

3. STEADY·STATE PLANE STRAIN MOTION IN A RECTANGULAR LAYER

The layer considered in this problem and the coordinate system used in the study of its
motion are shown in Fig. 1. Its length is infinite along the x3-axis, it has thickness 2b along the
xraxis and width 2a along the xl-axis.

We examine steady-state plain strain motion and account for the time-dependence of the
field variables through a harmonic term e/ool

, where (I} is the frequency. Thus, if a function g
represents a time-dependent field variable, we define the corresponding complex valued
time-independent variable g by

For convenience we will delete the superposed bar and use the same notation for the two
functions. For plane strain U3 and U3

(11
) vanish throughout the plate and all functions are

independent of Xl' Therefore, the variables TlJt Dh UI and q, depend on XI and Xl and the
variables T~7), Dl"), ul") and 41(11) depend on Xl only.
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The boundary conditions at the faces and the edges of the layer are specified by

T21 (Xh b) = TiI(XI);

T22(X" b) = Ti2(X,);

T23(Xh ±b) = 0

t/>(Xh b) =t/>+ =const.

t/>(Xh -b) = t/>- = const.

T2J (Xh -b) =T21(x.)

T22(Xh -b) =Tib,)

(3.1)

Tu(a, X2) = tt.{X2); Tu(-a, X2) = tjl(X2)

T12(a, X2) =tMX2); T.2(-a, X2) =Tj2(X2)

T13(±a, X2) = 0; D.(±a, X2) = O. (3.2)

Specifying the appropriate displacement components at the edges' instead of the stress com
ponents indicated in (3.2) would also be acceptable.

We note here that the solution of the problem stated above for the infinite rectangular layer
is identical to the solution of the similar problem for a finite rectangular layer with the following
additional boundary conditions at the ends, X3 =±c.

(3.3)

This can be verified by considering the constitutive equations (2.3) and (2.4) of (1] for plane
strain conditions and observing that the boundary conditions (3.3) at the ends are satisfied at
any perpendicular cross section of the layer.

For steady-state plain strain motion of a layer with equipotential faces, the 2-D field
equations (3.33) of [1] reduce to the following:

N

(l +80o)cuu\~I. +2
1T
b ~ {Dmnu~~'P}

maO

- ~; (e21 +el6)t/>~r) + [pcu2(l +8no )- (~;y C44] UI(O)

=-iFI(O) for n=O,I, ... ,N

N

(l + 8no)c44u~~I. + I {B",ne.6t/>~I'l)}
mal

-;;, ~o {Dn",u\~P}+ [pcu2(l +800 )- (;;Y cnJ U2(0)

(1T)2 ~ {B ~("')} -1 £;0(0) n1T B 1 B f 0 I N+ 2b ;:. o",mnenY' = b q +2b 00 b en or n = , ,... ,
N

~ {Bome.6U~~m - fut/>~rl +n21Tb (e16 +e2.)u\~1
",-0

+(2~Y ~O {B....mnenur)} +(~;r Ent/>(n) = 0 for n =1,2, .. ,,N. (3.4)

We solve the set of coupled second order ordinary differential equations (3.4) by first
transforming it into a set of first order ordinary differential equations. For this purpose we
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define 3N +2 functions Zl")(XI) as follows:

'IT N n'IT
Zl(n) = (1 + e5no)clI"\~l+ 2b .*0 {Dllln"tn)} - 2b (e21 +eI6)cf>(n) n =0.1 ..... N

N 'IT N
%2(n) =(l + 8no)c44"~1 + I {BlllneI6cf>~r)} - 2b I {Dnllllll(Ift)} n = 0.1•...• N

m-t maO

N

%3(n) =I {BnlfteI611~':p} - Ellcf>~f) +n
2

'IT
b

(e16 +e21)1I1<n) n =1,2, ... ,N. (3.5)
Ift-O

With these definitions. we can rewrite (3.4) in the following form:

z\':l =[(;:r C44 - f.kt'2(l + 8no)] III(n) - i FI(n) n =0,1... " N

z~':l =[(;:)
2

Cn - f.kt'2(l + 8110)] 112(n) - (2~)
2
~l {Bnlllmnencf>(III)} - i F2(t1)

n'IT 1
+2b Bno 1i enB n =0, I, ... , N

z~~l =- (2~r jo {Blftnmnenur)}- (;:Y £ncf>(n) n = 1,2•... , N. (3.6)

Now, 3N +2 linear equations (3.S) can be solved for 3N +2 functions u\~l, Il~':l (n =
0,1, ... ,N) and cf>~:) (n =1,2, ,N). The solutions will be linear combinations of functions
"I(n), "2(n), Zl(nl, %2(n) (n =0,1, , N) and cf>(n), Z3(n) (n =1,2, ... ,N). Combining these solu-
tions with (3.6), we can then construct a set of first order ordinary differential equations
expressible in the following matrix form.

(3.7)

In (3.7) y(x.) is the (6N +4) x 1 array of the unknown functions, and it is given in transposed
form by·

(3.8)

-1 is a (6N +4) x (6N +4) matrix. Its elements depend on the material constants and the
frequency only. 4(XI) is the (6N +4) x 1 array of forcing functions. Its non-zero elements are
the non-homogeneous terms on the right hand sides of eqns (3.6).

The complete general solution to a set of coupled first order ordinary differential equations
of the type (3.7) is given, e.g. in Chap. 5 of Ref. (2). For (3.7), in particular, the solution is:

(3.9)

In (3.9) c is an (6N +4) x 1 array of arbitrary constants while W(x.) is a (6N +4) x (6N +4)
matrix catled the standard fundamental matrix of the homogeneous system and it is given by

(3.10)

where Y(XI) is the diagonal matrix with the diagonal elements,

(3.11)
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The AI to A(6N+4) are the eigenvalues of -1. eis the matrix whose rth column is an eigenvector
of -1 corresponding to Ar

The elements of the arbitrary array <2 are determined by the edge boundary conditions. For
traction-free edges across which no current flows, the boundary conditions are:

T\1'(xI) = 0 at XI = ± a for n = 0, ... , N

TW(x.)=O at XI =±a for n =O, ... ,N

(3.12)

By means of the appropriate field equations we can express the boundary conditions (3.12) in
terms of the values of the two-dimensional variables "r and t/J(ft) at XI =± a. Substituting next
the solution from (3.9), we would obtain (6N +4) linear equations in the (6N +4) unknown
elements of ~ which we could then solve to completely determine the solution.

When the layer is the active element of a circuit, B is an additional unknown. The additional
equation associated with it is derived by substituting the solution (3.9) into the circuit equation
(2.12) and carrying out the indicated integrations over the middle surface area of a unit-length
section of the layer. The values for A and Y to be used in that equation are those
corresponding to such a section of unit length.

The preceding is an outline of a method of obtaining the exact solution for the present
problem using the field equations deduced from an approximate theory of arbitrarily large order
N. In the actual solution of the problem the calculations can be much simplified by handling the
extensional and flexural variables separately, as these always uncouple. It may also be
worthwhile in this case to separate the component of the motion that is symmetric with respect
to the x.-coordinate from that which is anti-symmetric. This is possible not only becuase of the
structure of the field equations which allows such a separation but also because of the
symmetry of the edge boundaries with respect to the X2 - X3 plane.

4. STEADY·STATE AXISYMMETRIC MOTION OF A CIRCULAR LAYER

The layer we consider in this section has thickness 2b and radius a. The polar cylindrical
coordinate system is shown in Fig. 2. Restricting the study to axisymmetric motions, we require
all functions to be independent of the 8-coordinate. In this case the constitutive equations (2.3)
of [1] become

TrlI = T'B = 0; DB = O. (4.1)
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1 3

Fig. 2. Geometry and coordinate system for the circular layer.

The 2-D polar mechanical displacement, electric potential, stress and electric displacement
components are determined from the following equations for the Nth order approximate
theory.

N n1T
u,(r, Z, t) =I u,(ft)(r, t) cos -2 P- I/J)

ft-O

N n1T
uz(r, Z, t) =I uz(ft)(r, t) cos -2 (1- I/J)

ft-O

N n1T
t/1(r, z, t) =A +BI/J +I t/1(ft)(r, t) sin -2 (1- I/J)

ft-I

(T~), T<;,), T~~), T~» = fl (Tm T", Tzzo Tn) cos n; (1- I/J) dI/J

('t~), f<;,), f~~), f~» =f. (Tm T", Tzz, Tn) sin n; (1- I/J) dI/J

(D?), Dz(ft» =fl (D" Dz) cos n; (1- I/J) dI/J

(D,<ft), D}ft» = f. (D" Dz) sin n
2
1T (I - I/J) dI/J

u,(ft) =0; T~) =T~) =f~) =f~) =0; D,(ft) =D,(ft) =O.

From (4.1) and (4.2) we derive only the 2-D constitutive equations that will be needed

N N
T~) =(I +6fto)C44U~~~ +116 I {BIIlftt/1~~)} +2

1T
b C44 I {mBIIlftu,(IIl)}

",-I ",-I

N
n(ft)_ ~ {B (111'}_ ..I.(ft'+~e nu(ft)
IJ, - 116 ~ ftlllUZ.' Ell."., 2b 16 , •

",-0

(4.2)

(4.3)

At this point we impose the further restriction of time-harmonic motion, and, as in the
previous section, change to time-independent variables without change in notation. The
conversion of 2-D Cartesian displacement components into the 2-D polar displacement com
ponents follows the same rules as in the 3-D analysis. On this basis, the displacement-electric
potential equations of motion (3.33) of [1] can be directly transformed into the following
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N 'IT N 1
(1 +OOO)C44!iO(Uz(O) + L {eI6Bmo!i0(</>(m»} - 2b L {Dom - (ru,<m»,,}

m-I m-O ,

+[0 +Ooo)pw2- (;;Y cu] uz<O) +(;"Y eu ~O {Bommn</>(m)}

= (;;) BMeu:-i Fz<O) for n = 0, 1, ... , N

el6 ~O {Bom!ig{uz<n1»} - EII!ig{</>(O» +(~;) (e16 +e21) ~ (,u,<O».,

+(2~r eu ~I {Bmomnu/m)} +(~;r E22</><O) = 0 for n = 1,2, ... ,N. (4.4)

In (4.4) !ilc is the Bessel differential operator defined by,

(
d2 1 d k2

)!ilc = -,--,+---.,.dr rdr r'

and F,(II) and F/") are determined by,

F<O) p(o)
F.<o) =_I_ =!2-.
, cos 8 sin 8'

k =0,1 (4.5)

(4.6)

We now solve these equations by the use of finite Hankel transforms. For this purpose we
define values AI> A2, • •• as the positive roots of the equation,

(4.7)

where Jic denotes the Bessel function of the first kind of order k. By the theory of Bessel
functions Ap are also the roots of

(4.8)

or simply,

Jo(Apa) =0. (4.9)

We note here that Ao=0 is also a solution of (4.7) and (4.9).
We denote the finite Hankel transform of order k of a function g(r) evaluated at Ap by

The inversion formula for k =1 is (see [3], p. 83).

( ) _ 2 ~ - (I) JI(A,')
g , - (? ,w gl 1\, [1. (A a)]Z'

",>0 0 P

(4.10)

(4.11)
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while the inversion formula for k =°is (see [4J, p. 597).

( ) _ 2 ~ _(I) Jo(A"r)
g r - i? A-;t.O go II, [Jo(A,a)f

The inversion formula (4.12) is valid in the closed interval [0, aJ. However, the inversion
formula (4.11) is valid only in the open interval (0, a) and it always produces the zero value at
the end points of the interval. Therefore before taking the finite first order Hankel transform of
a function, we decompose it into two functions, one that vanishes at the boundaries and another
that yields the boundary values. For example, the function u,<")(r), which for axisymmetric
motion vanishes at r =0, can be decomposed in the following way. '

(4.13)

where

(4.14)

After substituting (4.13) into (4.4), we apply the first order finite Hankel transform to the first
of (4.4) and the zero order finite Hankel transform to the second and third of (4.4). This will be
done separately for positive values of Ap and for Ao. The following notation will be used to
denote first and zero order finite Hankel transforms of a function g(r).

g(A,) = ~I[g(r); r~A,J
I(A,) =~ofg(r); r~A,].

The theory of finite Hankel transforms with (4.7) and (4.14), yields

Also, for an arbitrary function g(r) (see [3J, p. 87),

Then from the theory of finite Hankel transforms and (4.9) we obtain,

%offJO<uz(a»; r~ '\,] = aK(a)JoC'\,a) - '\,2uz(a)(A,)

%o[fJo(l/>(a»; r~ '\p] =aG(a)JoCApa) - A/~(a)().,)

where constants K(a) and G(a) are defined as follows.

K(a) =u~~l(a), n = 0, .•. , N

G(a) =I/>~:)(a), n =1, ... , N.

Use of (4.10) and (4.14) along with a recurrence formula for Bessel functions gives

and we recall (see [3J, p. 88).

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)

(4.21)
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.l"o[e; r~A,l =j0 a2

e2 ,Ap =0. (4.22)

Next we carry out for Ap >0 the indicated finite Hankel transforms on (4.4) and obtain with
use of (4.16)-(4.22) the following linear system of equations.

(1 + 15.0 ) (pw2_ cIIA/- (~;y e~] f·l(A,)+; (-Ap)~o {Dm.u}ml(A,)}

+ ;; (e21 + eI6)Ap~'·I(Ap) = ((1 + c5.0 )pw2 - (;;y e~] ('IlIl (:: JoCApa)]

1 -'"1 _-bF, (Ap) for n-O, ... ,N

- (2~) ~o {DlIlIIApfml(A,)}+(1 +15110 ) (pw2_ c~Al- (;;Y en] ".(lIl(A,)

N •
+~ {Rpmllq"ml(Ap)} =- (1 +810)e~aK'"1JO(Apa)

m-O

N 1
-e16 ~ {BmllaG,mlJo(Apa)}--b F}"1(A,) for n =O, ... ,N

m-I

(;;) (e21 + eI6)A,f·'(A,)+ ~o {R,"mu}ml} + [(IIA,2+ (;;y (21] ~(lI1(A,)

N
=- el(, ~ {BllmaK(lI lJo(A,a)} +(lIaG(1I1Jo(A,a) for n =1, ... , N (4.23)

m-O

where we have defined

For Ao=0 the application of the first order finite Hankel transform to the first of (4.4) gives a
trivial result. However, the application of zero order finite Hankel transform to the second and
third of (4.4) yields at Ao=0

[(1 + 8110 )pw2 - (;;y C22] ".(lI1(0) +(;y tn ~o{BlImmn~(ml(O)}

=- (l +8110)c~aK,n) - f {tI6B_aG,m)} +(21Tb) a2 f {Dllm('lm)} - -b
1

F}")(O)
m-l Ift-O

n1T B (1 2) f - 0 N+2b BlIot 22 Ii 2a or n - , ... ,

(2~Y tn ~I {Bmllmnu}m)(o)} +(;;y fn~(lI)(O)

=- tl6 ~o {BlImaK'm)} + (1I aG'") - (;;) (t16 + e21)('I")a2 for n =1,2, ... , N. (4.24)
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We can now solve 3N +2linear equations (4.23) for 3N +2values rlt)(A,,), uz(lJ)(A,,), f{It)(A,,) for all
A" >O. Also 2N +IUnear equations (4.24) can be solved for 2N +I values u/It)(O) and ~(II)(O). Then
the inversion formulas (4.11) and (4.12) can be applied to obtain the following expressions for the
field variables.

(4.25)

The solutions are in terms of transforms of forcing functions as well as the yet-unknown 3N +2
constants C<It), J«It) and G(II).

From (4.13). (4.14) and the general form of the expansions in (4.25), it can be easily verified
that the field variables u,{It), u}It) and f(It) already satisfy the conditions ofaxisymmetry, i.e.

u,(It)(O) = 0; u~:'l(O)=O; (4.26)

Therefore we have only the following edge boundary conditions to use in the evaluation of
constants C<"), K(II) and G(It).

T~)=O for n=O, ... ,N

T~)=O for n=O•...• N at r=a

D,'Il) =0 for n =1, ... ,N. (4.27)

Substitution of (4.13), (4.14) and (4.20) into the second and third of (4.3) yields with (4.27)

for n=O,I, ... ,N

N n~
eJ6 ~ {B"mK(ml} - f"G(It) +2b eJ6a C<'" =0

m-O

for n=I .... ,N.

We rewrite the first of (4.3) as follows:

By (4.13) we have

(4.28)

(4.29)

(4.30)

Because of (4.21) and the inversion formula (4.12) the following expansion is valid in the closed
interval [0. a].

! (rtlt» _ 2 ~ A lIlt)(A) JO<).,r)
r .' - (i2 A'fto"r " [Jo(A"a)f

(4.31)
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Now we substitute (4.30), (4.31), (4.13), (4.14) and the second and third of (4.25) into (4.29) and
obtain with the first of (4.27)

In (4.32), in addition to the explicit presence of c<n), we also have K(n) and G(n) involved
through the terms ofrn), ",(II) and ~(II). The equations (4.28) and (4.32)form the set of 3N +2linear
equations which determines the set of 3N +2 constants ('<"), J«") and G(II).

When the circular layer is the active element of a circuit, B becomes another unknown
constant. The additional equation associated with it is derived by substituting the solution (4.25)
for the two-dimensional field variables into the circuit equation (2.12) and carrying out the
indicated integrations over the middle surface area of the layer.

S. THE TRANSIENT RESPONSE OF A CIRCULAR LAYER AFTER A
SUDDEN RELEASE FROM AN INITIAL DEFORMATION

In this section we consider the problem of the transient response of the circular layer shown
in Fig. 2. The motion is caused by an initial radially symmetric static surface load which is
released at time, t = O.

We are primarily interested in the voltage that appears between the faces of the layer.
Therefore, we need only study the extensional component of the motion. For this purpose, we
use the first order approximate theory, which is the lowest order theory that incorporates the
above-mentioned voltage difference in its extensional field equations.

The field equations governing the 2-D extensional displacement components, u,(O)(r, t) and
u}l)(r, t) of the first order theory are determined from (4.4) to be the following

£t (u (0» +...!.. CI2 B u{l) _l!.- a(0) =0
I, 4b CII 10 z.r CIl' ,

£t (u (I) _...!.. C12 B ! (ru (0» _ (...!..)2 C22 U (I)° z 2b C44 10 r '.' 2b C44 z

_l!.- az{l) =.!. (.!!..) e22 B1oB(t).
C44 b 2b C44

(5.1)

The extensional boundary conditions are those of vanishing stress components T~) and T~)

(see eqn 4.3) at the cylindrical edge and the symmetry conditions at the center:

u~~~ =0,
u,(O) = 0, u~~~ = 0 at r = O.

Iat r=,

(5.2)

We also need initial conditions which we specify as

u,(O) = IoCr) +Cor, uz{l) =goCr)I
at t =0
for 0 =;;; r =;;; a. (5.3)

",(0) = 0, "}I) = 0

In the initial condition for u,<O) we have anticipated a decomposition similar to that in (4.13). The
functions lo(r), goer) and the constant Co are to be determined by the specified initial static load
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from the solution of the problem of Section 4 for the first order extensional theory at frequency
", = O. The terms /0' go and CD correspond in the terminology of Section 4 to u,(O), uz(l} and ('10),
respectively. For the present problem, however, we define variables fer, I), C(t) and g(r, I) by

where

u,(OI(r, I) =/(1', I) +rC(/); (5.4)

C(t) =a-I u,(O)(a, t); lea, I) =O.

In terms of the new variables /, g, C, we have the following initial-boundary value problem.

{J1(f)+.!!. CI2 BloI.,-J!.. i=J!.. Cr,
4b CII CII CII

(J () 'IT CI2 1 rf ( 'IT)2 C22
o g -2b ' .... Blo ,( ),,- 2b , .... g

_J!.. g =! (.!!.) en BloB(/)+:!! CI2 BlOC'
C.... b 2b c.... b ' ....

f" +.!!. C12 BIoi = -b-' e21 B _ (CII +Cn) C, ]
4b CII Cll 'II

1,,=0

f =0, g., =0; at I' =0, t ~ 0

f(r,O) =fo(r), g(r, 0) =goer)

C(O) =Co, i(r, 0) + C(O)r ::: 0, g(r, 0) =0,

at 1'= a
t~O

(5.5)

We solve this initial-boundary value system by successive applications of Laplace and
Hankel transforms. Let the Laplace transform of an arbitrary function of time, h(t) be denoted
by

Ji(p) =.2'[h(t)J =f h(/) e-pt dt. (5,6)

Then we apply the Laplace transform to the field equations and the boundary conditions in
(5.5). With use of the initial conditions this results in the following boundary-value problem for
ordinary differential equations,

{Jo(g)-.!!. CI2 Blo!(rh" _ ((.!!.)2 cn+J!.. p2] g =_J!.. pgo(r)
2b c.... r 2b c.... c.... c....

+!(.!!.)!nB B- +:!!CI2 B Cb 2b c.... 10 b c.... 10 ,

i. r+.!!.£Jl BIoi =(-I)!lJ. B_('II + 'n) c]
4b CII b ell 'II at r= a

g,,=O; 1=0
1=0, g" =0; at r =0 (5.7)

where the last of the boundary conditions at I' =a is obtained from the definition of f in (5.4),
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As a first step toward the application of the Hankel transform we define a sequence of
positive constants AI> A2, ••• ,as in (4.7). We then introduce the following notation for the
doubly transformed variables

We also need

i(A., p) = 7(1 [j(r, p); r-+ A.],

g(A.,p)=7(o[g(r,p); r-+A.]. (5.8)

(5.9)

Now we apply the first and zero order Hankel transforms, for A. > 0, to the first and second
of (5.7), respectively. With the use of results from the theories of Hankel transforms and Bessel
functions, the definition of A., and the jloundary conditions at r =a in (5.7), we obtain the
following linear system for determining RA., p) and g(A., p).

In the remaining analysis it is convenient to use dimensionless variables and parameters. We
define these dimensionless (primed) quantities by

r' = ria, f' =I/a, g' =g/b

I' =I/2: V(P/C44), Cli =C;/C44' eli =e;/V(C44f22)

V' =Vh!(b2C44/f22), Y' = Y/(1Ta2f22/2b2)V(C44/P),

P' = P/1Ta2c44'

where P represents a force (to be introduced later). Therefore,

A~=A.a, p'=pT, 1'=i!Ta, i'=f!a 3

g' =g/Tb, g' =g/a2b, T=(2b/1T)V(P/C44)'

(5.11)

(5.12)

We will omit the primes for economy of notation but with the understanding henceforth that all
quantities are dimensionless. We also recall the value of Blo and introduce the parameter u as

(5.13)

Using these results, we write in dimensionles3 form the solution of (5.10) as follows

:; - - -I
I(A., p) = {EMA., p)C(p) +8 2(A., p)[/o(A.) - CoA. loCA.))

+8 3(A., p)gQ(A.)}/'l'(A., p)

g(A., p) = {fl(A., p)C(p) +f 2(A., p)fL(A.) - CoA.-1/o(A.)]

(5.14)
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in which

'I'(A". p) =p4U2CIII +p2[(1 +cl.'>uA,,2 +u2c22cIll +A1I
2/(A,,),

8 1(A". p) =u'{P(A,,2 + UCn +up2)J"A,,)/CllA".

~(A". p) =pu(A1I
2+UC22 +Up2)/Cll.

83(A". p) = - (fTU/2y2)pAlICI2/CII.

fl(A". p) =-2y21r-'U2p2CI2Jo(AlI)/Cll'

f 2(A". p) =- 2Y21r-IU2pAlICI2lcll. f 3(A". p) =up(A,,2 +up2C1t). (5.15)

where leA,,) is defined by

(5.16)

Next we apply the appropriate Hankel transforms to the first two equations in (5.7) for
A" = Ao• The first equation yields nothing new. but the second one produces the result

In order to satisfy the remaining boundary_condition. which is the first in (5.7) at r=a, we
must apply the inverse Hankel transforms to {(A", p) and ;(A". p) in (5.14) to obtain

(5.18)

Then the substitution of (5.18) into the remaining boundary condition yields. with use of (5.14)

(1r/y2)CI21(o, p) +e21B(p) +(CII +CI3)C(P)

+2 ~ {(AncH8 1+ (1r/2y2)CI2fl]C(P)
A.>O

+ [A"C118 2+(1r/2y2)cI2f 2l[!n(A,,) - Co!o(A,,)AlI-
l
]

+[A"C1183 +(1r/2y2)cl2f3]go(AlI)}1J0(AlI)'I' =O. (5.19)

This result and (5.17) give two equations in the three variables I(o.p). B(p) and C(p). A third
equation is obtained from the circuit equation (2.12). which for the first order theory in
axisymmetric dimensionless form becomes

- B(/) +2e21 6(/) +1renA(O. I) =21r-1YB(/).

Application of the Laplace transform to this equation yields

- (p +21r-1Y)B(p) +2pe2l C(p) +1renP/(O•. p)

=2121 Co +1reJo(O).

in which we have set

B(O)=O.

(5.20)

(5.21)

(5.22)

representing steady-state closed circuit conditions before the initial static load is released.

SS Vol. 17, No. 12-F
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Solving (5.17), (5.19) and (5.21) for B(p), C(p) and g(O,p), we obtain for B(p) the expression

NZI(p) +2pz ~ N 41(An, p)/'V(An, p)
B(p) = A.>O

N 31(p) - 2upz ~ N 51(An, P)/'V(An, p)
A.>O

(5.23)

in which 'V(An, p) is defined in (5.15) and N21(p), N4)(An, p), P3(3)(p) and Pll(Aft , p) are second,
fourth, third and fifth order polynomials in p, respectively. They are explicitly defined as
follows:

N21(p) = p2e2l [(1T/y2)c1280(0) +(CII +CIl)Co]

+ [C2Z(CII + C13) - 2dz][ezi Co+ (1T/2)ezJo(0)],

N 41(An, p) = p4u2e2l [AJ.,(Aft) +(1T/2Y2)clzc.llo (An)]/Jo(Aft )
Z Z -+ P ([uezll(Aft ) - u (y2tncl2 - cntzl)]AJo()'ft)/JoCAft)

+(1Tuz/2)clzc.UO/Y2)czzezl - clzezz]lo(Aft)/Jo(Aft")

+(1Tuz/2)encnKo(0) +uZy2clzenCo}

+ ul(Aft)[(czzezl - y2cll en)AJo(An )!Jo(Aft )

+(1T/2)czzenlo(0) +(y2)clzenCo],

N 31(p) = p3[_ e~1 - (CII + c13)/2] + pZ[- Y1T-1(CII + CI3)]

+p[(l +y2)c,zezlezz - cnefz - (CII +CI3)(CZZ +y2e~z)/2]

+ Y1T- 1[2dz - CZZ(CII +CIl)],

N 51(An, p) = p5u/2 +p4u Y1T- 1+p3[l(An )/2 + u(czz + y2eh)/2]

+ Pz Y1T-1[l(An ) +uCn] +pl(Aft)(czz + y2e~z)/2 + Y1T- l czzl(An ) (5.24)

in which l(Aft) is defined in (5.16). The quantities l(Aft), 'o(An), Co and 1(0) appearing in NZI(p)
and N 41(Aft,p) are determined by the initial conditions given in (5.5).

If the infinite series in (5.23) are approximated by their first m terms, B(p) can be expressed
as a quotient of two polynomials in p:

(5.25)

Disregarding cases in which R(3+
4ml(p) has repeated roots, the quotient in (5.25) can be

expressed as a sum of partial fractions such as

A
p+a'

Ep+F (5.26)

where p + a, p +, and p +; (, ='1 +;,z) represent real and complex conjugate factors of
R(3+

4ml(p). The corresponding inverse Laplace transforms are

(5.27)

The electric potential difference between the two electroded surfaces, 2B(t), is therefore
obtained by a summation of terms such as those in (5.27).

The series in (5.23) converge like 1/A/ and therefore like 1/nz. This means that the number,
m, of terms required for a suitable approximation may be too large for this inversion scheme to
be practical. In this case a numerical inversion technique, such as one based on the Fast Fourier
Transform. is likely to be preferable. This will be examined in the context of a particular
example in the next section.
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6. AN EXAMPLE

We now consider a specific example of the static initial mechanical loading on the
piezoelectric layer. Let the radial component of the facial loads vanish and let the axial loads
consist of a central concentrated force P, on one side with a balancing uniform peripheral load
on the other. This loading configuration can be thought of as the limiting case of that given
below as '" -+ o.

F,(O' =0; F/" =p,,[I- H(r - ',,)+ H(r - rl)],

where F,c°' and F/I) are given in (4.6), H stands for the Heaviside function and

From (4.15) we find

F,(O)(AII )=0 ftz(l)(AO) =PI1T

ftP'(AII )= (Pldll)[,,,-IJI(An',,) - '1,,,-2JI(AII'I)J, All> O.

In the limit '" -+ 0 this yields

(6.1)

(6.2)

(6.3)

Using this and the first of (6.3) in the first order equations in (4.23) with w =0, we obtain in
dimensionless form

An!,,(An)+(1T/2y'2)c12Cill,,(An) =0,

2y'2(T1T-1CI2An!,,(AII) +(A/ +uCn)I,,(An) =2uP1T-2[1 +JO<AII )}, All> 0 (6.5)

which has the solution

- -I!,,(An) =- UPCI2CII [I +Jo(An)]/y'21TAII [(An),

10(An) =2uP[1 +Jo<An)]11T2/(An), All >0, (6.6)

where [(All) is defined in (5.16). It still remains to determine Co and '0(0). Two equations for
determining them are obtained from the first of (4.24) and (4.32). After elimination of B(O) and
also K(l) by the use of the second of (5.6) we obtain from the first of (4.24)

(1T/2)cuKo(0) +y'2c12C" =217'-1P.

Use of (6.5) in (4.32) yields

These two equations determine '0(0) and Co as

'0(0) =41T-2p(CII +cl3)/[cn(clI +CI3) - 2d2],

Co = - 2y'21T-1PCI2/[Cn(CII +cn) - 2et2]'

(6.7)

(6.8)

(6.9)
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Equations (6.6) and (6.9) supply the fo(A,,), go(A,,), Co and 80(0) needed to completely
determine B(p) in (5.23) with the use of (5.24). Making the indicated substitutions we obtain

(6.10)

in which 'I'(A", p) is defined in (5.15) and the polynomials Q,,(ml are defined as follows

Q.(OI(p) = 21/'-1 P[e22(clI +cu) - y'2C\2t2d,

Q2(21(A", p) = 0'21/'-1 P{2e22 - (CI2e2l/y'2clI)[1 +Jo(A,,)]/J0(A,,)}p2

+0'1/'-1P{2e22/(A,,) - (O'C\2/y'2clI)

x (C22e21 - y'2CI2e22)[1 +Jo<A,,)]/Jo(A,,)}

Q3(31(p) =N31(p), QPI(A",p) =Ppl(A",p), (6.11)

where Ppl(p) and NSI(A", p) are given in (5.24).
The particular piezoelectric disk chosen for numerical computations is a Vernitron F-3

PZT-5 ceramic with the following physical parameters

a =0.0125 m, b =0.000625 m, p =7.75 x J03 kg/m3
,

c... =2.11 X 1010 N/m2
, En =7.35 x 10-9C/Vm

CIl/C", =5.73, c22/c =5.26, cu/c... =3.57

cI21c... =3.56, en/y'(Enc ) =1.27, e21/y'(Enc...) =- 0.434.

The circuit to which the crystal is connected is assumed to have an input impedance of 50 n, so
that

(6.13)

(i) Approximate Laplace inversion using residue theory
In Section 5 the function B(p) was represented in (5.25) as a ratio of polynomials Q(2+4m)(p)

and R(3+4ml(p), where m is the number of terms retained in the series in (5.23), or equivalently,
in (6.10). We considered the cases m = 1, 2 and 3, which give simple poles of the approximate
function B(p) in the complex p-plane that yield dimensional frequencies according to (5.27) as
listed in Table 1. We see that the frequencies that occur for m =1also occur for m =2 and
m=3, and those that occur for m=2 also occurs for m=3 with only slight displacement. The
new frequencies that appear as m increases are interlaced between the previous ones. The time
histories corresponding to the m=1, 2 and 3 term approximations, as obtained from (5.27), are
shown in Fig. 3. Here we see that the convergence does not appear to be rapid. For this reason
an alternate numerical inversion scheme was used.

(ii) Approximate Laplace inversion using Fast Fourier Transform
Consider the Laplace transform of a function h(t) and its corresponding inversion

1 fC+i"
h(t) = -2' h(p) ept dp,

1/'1 c-j"
(6.13)

where c locates the path of integration in the complex p-plane to the right of the poles of h(p).
In the application of interest here we can take c = O. Next consider the Fourier transform and
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Table 1

1 Term 2 Terms 3 Terms

Laplace FFT Laplace FFT Laplace FFT

0.093 0.0950 0.0878 0.08~5 0.0855 0.0850

0.2248 0.2300 0.2188 0.2200

0.3465 0.3450

1.2654 1.2234 (1.1700) 1. 20B6 (1.1900)

1.5300 1. 5300 1.5288 1.5300

1.5550 1.5550

1.6689 (1.6300) 1.7005 (1. 6660) 1.7139 (1.6950)

.lI5nr----------- --,

...g..
L

ootI

8...
w

J T.'-1Il

3 T.'-IIl.

-. Iir.).;---~=__--__::+_---~--___:!
5 HI JS 28

Tjill. (iii j o,-o••oond. )

Fig. 3. Free-vibration electrical output of piezoelectric transducer element (Laplace inversion).

its inversion of a function h(t) that vanishes for t < O.

h(j) =r h(t) e-i2,,/t dt; h(t) =L: h(j) ei2,,/t d/· (6.14)

When c =0 the transform pairs in (6.13) and (6.14) become identical through the substitution

p =;21r1· (6.15)

Furthermore the Fourier transform pair as given in (6.14) is the form used as the basis for the
Fast Fourier Transform (see Brigham[5]). From (6.13)-(6.15) it follows that

h(p) =h(i21rf) =h(/). (6.16)

Therefore the substitution of (6.15) into B(p) of (6.10) produces 1J{f) which can be calculated
for 2N equally spaced points {f.}. The result of this computation is a sequence of complex
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numbers {B(f.)} which must be properly arranged to insure that the inverse FFr will produce
the correct real time history. We choose /if and N such that the entire frequency spectrum is
contained in the interval O:EO f:EO [(2N/2) +1]1i/. Then the real part of {B(f.)} is reftected evenly
about the mid-point k = (2N/2) + I while the imaginary part is reftected oddly. This insures
periodicity in the frequency domain of period F, and corresponds to a sampling interval in the
time domain of AI =I/F. Correspondingly, the period in the time domain is T =l/li/.

The technique just described was used to calculate B(/) from (6.10) and (6.15). The series in
(6.10) were terminated after m terms and it was found that suitable convergence was achieved
for m= 35 but not for smaller values. Figure 4 shows the frequency spectrum for m = 3. The
vertical scale on this graph is not absolute. The frequencies giving peaks in the spectra for
m = I, 2 and 3 are listed in Table I, where they can be compared with those obtained from the
Laplace inversion. If the poles in (5.25) lie close to the imaginary axis in the p-plane a sharp
spike is produced in the frequency spectrum; otherwise a smoother maximum occurs as can be
seen in Fig. 4 at 1.19 MHz. Peaks of this type are placed in parenthesis in Table 1. Also if the
amplitude in (5.27) corresponding to a particular frequency is small, a high peak will not occur
in the frequency spectrum.

Figures 5 and 6 show the frequency spectra for m= 5 and m= 12, respectively. We see that
as m increases the low frequency part remains fixed and the higher frequency part fills in.
Figures 7 and 8 show the frequency spectra for m=35 and m=40. These spectra are in
complete agreement except for the highest frequency spike around 2.8 MHz. Evidently higher
frequency spikes would continue to occur as m increases. Figures 9 and 10 show the time
histories for m=3 and 5 and m=35 and 40. The differences between the m=3 and 5 results
are evident in Fig. 9, but the m = 35 and 40 results in Fig. 10 are nearly identical. When these
graphs are superposed there are no important differences. These results were computed taking
N =4096 and /if =5kHz. Only a portion of the first period was plotted in the time domain and
in the frequency domain. The frequency period of the FFr is 20.48 MHz while the total time
period is 200 ILS. The corresponding time interval is about 0.05 ILS. The failure of the time
histories based on the FFr to satisfy the zero initial condition is due to the fact that the signal
has not decayed to zero by the end of the time period, T =200 ILS. Therefore, the periodic time
function has a discontinuity at I =0 and the value produced there by the FFr is the average of
the two limiting values. The differences in the time histories for m = 3 in Figs. 3 and 9 are not
easily explained. Clearly the lower frequency parts are in agreement but the relative amplitude
of the high frequency parts appears to be greater in Fig. 9 than in Fig. 3. Observe from Fig. 4

.+B7~-.....---------r------------.

.+166

L

=cf

.+165
v

.+B4~)...I......L--1\~'I-----!16 J 2 3
Fr-equenoy 'lI/fHz )

Fig. 4. Power spectrum (3 terms, FFT).
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Fig. S. Power spectrum (S terms, FFI').
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Fig. 6. Power spectrum (12 terms, FFT).
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31 Z
F,...que"oy (14Hz )

Fig. 7. Power spectrum (35 terms, FFT).
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Fig. 8. Power spectrum (40 terms, FFT).
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Fig. 9. Free-vibration electrical output of piezoelectric transducer element (FFI' inversion).
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Fig. 10. Free-vibration electrical output of piezoelectric transducer element (FFI' inversion).

55 Vol. 17. No. !2-{J



1202 N. BUGDAYCI and D. B. BOGY

that two high frequency spikes occur very close together. Table I indicates that one is at
I.5550 MHz, as obtained from both methods. The other is near 1.5300 MHz. Since the AI used
in the FFT method was 5kHz this is the closest point to the value 1.5288 obtained by the
Laplace method. The possible error in the location and hence the magnitude of this peak could
cause it to combine with the neighboring peak in such a way as to account for the observed
difference.

7. DISCUSSION AND CONCLUSIONS

The two dimensional approximate theory of Part 1[1] for strongly coupled piezoelectric
plates with electroded faces, which can accommodate arbitrary face loading and can be
connected to an electric circuit, has been applied here to a PZT-5 crystal that is poled in its
thickness direction. An important circuit equation was derived in Section 2. The steady time
harmonic problems of plane strain and axisymmetry were solved in Sections 3 and 4,
respectively. The transient axisymmetric problem was solved for arbitrary surface loads in
Section 5, and this solution was applied to a particular loading case, that can be realized in the
laboratory, in Section 6. There the output voltage as a function of time was calculated for a
circular disk that is initially deformed by a central concentrated normal force and an oppositely
directed ring load at its outer edge.

Two different techniques were used for inverting the Laplace transform of the output
voltage. The first, which is practical when a small number of terms in the series in (6.10) are
retained, uses residue theory, and it illustrates clearly the functional form of the components of
the solution. In the second method the Fourier transform of the voltage is calculated, and this is
inverted by use of a FFT computer algorithm. It was shown using this technique that 35-40
terms of the series in (6.10) must be retained to insure convergence. However, the higher terms
of the series affect only the high frequency components of the output voltage. Most likely these
high frequency components, in the 2MHz range, would have relatively much less power in the
corresponding experiment. It is expected that internal dissipation mechanisms, not accounted
for in the theory, would reduce the power in these high frequencies. An experimental study of
this and related problems will be the subject of a separate publication.

In comparing solutions of the type considered here with the corresponding experiments it
may become necessary to use the second order approximate theory rather than the first order
theory that we employed. However, for the crystal represented by (6.12) the dimensionless
time, 7', in (5.12) is 2.41 x 10-7 sec. It follows from (4.4) of [1] that n= 1 corresponds to
4.15 x ICY' H. Figure 4 of [1] indicates that the first order theory should be quite satisfactory up
to this frequency.
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